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We study the evolution of a family of dumbbell-shaped liquid patches surrounded by air inside a rotating
Hele-Shaw cell with lubrication methods and numerical simulations. Depending on initial conditions, the
dumbbell either stretches to infinity, pinches off at the neck to form a droplet, or collects into a circular drop
at the center of rotation. Whether or not pinch-off occurs results from a subtle interplay between centrifugal
and capillary forces. In particular, rotation may delay or even prevent pinch-off from occurring owing to
stretching and smoothing of the fluid neck. However, frequently rotation may have the opposite effect leading
to pinch-off where the relaxation toward a circular drop would be observed in an ordinary Hele-Shaw cell.
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I. INTRODUCTION

Topological singularities and, in particular, interface
pinch-off of two-phase fluid flows have been the object of
intense study in the last decades �1–4�. Hydrodynamics alone
has been shown to be sufficient to account for the existence
of finite-time pinch-off singularities, starting from regular
initial conditions. In fact, when two interfaces approach each
other the continuum hydrodynamic description must eventu-
ally fail close to the interface contact. However, it has been
shown that the Navier-Stokes equations can be continued
uniquely through the singularity �1�. Thus, the molecular ef-
fects that eventually regularize the singularity and implement
the interface reconnection act instantaneously in the macro-
scopic scale.

In a Hele-Shaw cell with a gap spacing b, the interface
dynamics defines a well-known two-dimensional �2D� free-
boundary problem �5–7�. When the cell is rotating with an
angular velocity � �see Fig. 1�, the equation of motion of a
liquid with viscosity �, density �, and surface tension �
surrounded by air is described by the in-plane velocity v� =
−b2 / �12�i���� pi−�i�

2rr̂�, together with the two boundary
conditions at the interface, the Young-Laplace pressure drop
p2− p1=�� �where � is the in-place curvature� and the con-
tinuity of normal velocity vn1=vn2 �8–10�. In the absence of
rotation it has been shown that the two-dimensional dynam-
ics can lead to finite-time pinch-off �11–16�. In a specific
class of initial conditions that is directly relevant to the
present study, surface tension alone has been shown to drive
two droplets of fluid connected by a neck to finite-time
pinch-off in two-dimensional simulations �17,18�. Rotation
introduces the additional feature of spontaneously generating
long and thin �radial� filaments with droplet-shaped ends as
the natural evolution of an initial interface close to circular,
where the more dense fluid is inside. Experiments in rotating
Hele-Shaw cells �19,20� have shown that when the interface
separates two liquids the droplets do pinch off rather often,
while this process is rare when one liquid is surrounded by
air �high viscosity contrast�.

Although it may not be simple to elucidate whether sin-
gularities are inherent to the 2D Hele-Shaw dynamics, or

associated to three-dimensional effects, this question is par-
ticularly relevant in this problem since, in principle, the 2D
effective description ceases to be valid at the relatively large
scale b. In an accompanying paper �21�, the question of the
relevance of singularities in the 2D Hele-Shaw equations to
experiments in actual Hele-Shaw cells has been addressed in
detail. Reference �21� is complementary to the work reported
here in both methods and focus. There, a phase-field �diffuse-
interface� approach is used to study the occurrence of finite-
time pinch-off and its dependence on viscosity contrast. This
aspect would be very involved by means of sharp-interface
methods but is particularly suitable to phase-field methods.
The main conclusion of �21� is that pinch-off singularities
typically exist in rotating Hele-Shaw flows for low viscosity
contrast, in a regime where centrifugal forces dominate over
capillary forces, and are inherent to the 2D dynamics. In the
high viscosity contrast limit, however, the phase-field ap-
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FIG. 1. Top: sketch of a top-side view of the radial Hele-Shaw
cell with rotation where the inner fluid �named fluid 2� and the outer
fluid �named fluid 1� are indicated with different gray levels. At the
bottom, a top view of the cell with characteristic initial condition
with dumbbell shapes.
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proach is not conclusive. Instead, a more traditional sharp-
interface formulation based on a lubrication analysis seems
adequate and powerful at high viscosity contrast. This is pre-
cisely the aim of the present paper.

The outline of this paper is as follows. First, we recall the
set of equations that drive the rotational Hele-Shaw cell and
perform a lubrication analysis. The resulting lubrication
equation is analyzed from the perspective of the competition
between rotational and capillary effects. Within the lubrica-
tion equation the effect of rotation is typically to postpone or
eliminate finite-time pinch-off. However, the matching of the
lubrication region to the moving droplet at the end of the
filament imposes in general nontrivial boundary conditions
to the lubrication equation. We perform numerical simula-
tions of the evolution of a uniparametric family of initial
conditions that includes the droplets at the end of the fila-
ments �dumbbell shapes�. This permits us to study the exis-
tence of singularities in a well characterized problem
strongly related to previous experimental results. The com-
petition of various physical effects leads to different types of
approach to pinch-off depending on whether the drop recedes
toward the center or is expelled toward infinity. We demon-
strate a strong influence of the boundary conditions to the
lubrication equation on the dynamics of approach to pinch-
off. Finally, we conclude with some remarks on how our
results relate to previous experiments and hint at possible
future experimental work.

II. LUBRICATION APPROXIMATION

In this section we derive the so-called lubrication approxi-
mation for the dynamics of a thin rotating filament. Our start-
ing point is the vortex-sheet formulation of the 2D Hele-
Shaw equations for an interface r��s , t� in the presence of
rotation �5,9�:

r��s,t� = �x�s,t�,y�s,t��,
dr��s,t�

dt
· n̂ = U� · n̂ , �1�

with

U� =
1

2�
P�

0

L �y�s�� − y�s�,x�s� − x�s���
�x�s� − x�s���2 + �y�s� − y�s���2��s�,t�ds�,

�2�

where the integral is along the interface �L being the total
length of the interface�, P is the Cauchy principal part, and
the vorticity is

� = 2B�s − 2A�U� · ŝ� + 2Dr� · ŝ . �3�

Here we use the abbreviations

B =
b2�

12��1 + �2�
, D =

b2�2��2 − �1�
12��1 + �2�

�4�

and

� =
dx

ds

d2y

ds2 −
dy

ds

d2x

ds2 , �5�

where A= ��2−�1� / ��1+�2� is the viscosity contrast and U�
is the mean fluid velocity at the interface.

We are interested in the dynamics of thin filaments ori-
ented radially. In order to isolate the contributions from the
lubrication region, and following the same procedure as in
Ref. �16�, we consider an infinitely long thin fluid filament
which we assume asymmetric along the x axis and is defined
by the distance to the x axis y=h�x�. Parametrized with x, the
evolution equation for h reads

�th = Uŷ − Ux̂�xh , �6�

where U� is now written as U� �x , t�=Ux̂x̂+Uŷŷ, which we as-
sume to vary only in the x direction. Therefore, we have

U� �x,t� =
1

2�
P�

−	

+	 �h�x�� − h�x�,x − x��
�x − x��2 + �h�x�� − h�x��2
�x��dx�

−
1

2�
P�

−	

+	 �− h�x�� − h�x�,x − x��
�x − x��2 + �h�x�� + h�x��2
�x��dx�,

�7�

where 
=��1+hx
2�. Equation �3� reads in terms of x as


/2 = B�x� − AU� · �x̂ + ŷ�xh� + D�x + h�xh� . �8�

To perform a lubrication analysis we assume the interface
height h�x , t� to vary on a scale �h much smaller than the
scale of horizontal variations � and expand formally all
quantities in powers of �=�h /� to obtain an evolution equa-
tion for h up to first order in �.

We now scale h with �h, x with �, and the interface
velocity U� with V0= �B /�2�+D�. We expand any quantity Q
as Q=Q�0�+Q�1�+2Q�2�, so that the evolution equation for
h up to O��� becomes

�th = Uŷ
�1� − �xhUx̂

�0� + ��Uŷ
�2� − �xhUx̂

�1�� , �9�

where we have anticipated that Uŷ
�0�=0. Further, by expand-

ing U� and 
 along the same lines as in Refs. �9,16�, we find
�23�

Ux̂
�0� =

1

2

�0�, �10a�

Ux̂
�1� =

1

2

�1� + H��x�h
�0��� , �10b�

Uŷ
�1� = −

1

2
��x�h
�0�� + h�x


�0�� , �10c�

Uŷ
�2� = −

1

2
��x�h
�1�� + h�x


�1�� − hH��x
2�h
�0��� ,

�10d�


�0� =
2LD

�1 + A�Vo
x , �10e�
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�1� =
2B

�1 + A�VoL2�x
3h −

2A

1 + A
H��x�h
�0��� . �10f�

Here H�f��x�=�−1P�−	
+	f�x��dx� / �x−x�� is the Hilbert trans-

form of f�x�. The major difference between the weakly non-
linear expansion performed in �9� and this lubrication ap-
proximation is the appearance of the second integral in Eq.
�7�. Its expansion is not trivial as pointed out in �16�; there it
was solved using limiting procedures, the Plemelj formula,
and delta function representations.

Substituting these results into Eq. �9� and keeping the
scaling of lengths to show explicitly the orders in �, we
finally obtain

1 + A

2
�th = − D�x�xh� − �B�x�h�x

3h�

− D�
�1 − A�
1 + A

�x�hH��x�xh��� . �11�

This equation sets the basic framework for the discussion of
pinch-off phenomena in rotating Hele-Shaw flows. Note that
if the viscosity of the outer fluid is neglected �A=1�, the
equation becomes local. Herein, we will restrict to this par-
ticular case.

III. COMPETITION BETWEEN CAPILLARY AND
CENTRIFUGAL FORCES

The starting point of our analysis is Eq. �11� with A=1,
which in the original variables reads

�th = − D�x�xh� − B�x�h�x
3h� . �12�

Equation �12� has been studied extensively in the absence of
rotation �D=0�. It has been shown by Goldstein et al.
�12,15,16� that capillary forces may lead to finite-time pinch-
off for some specific boundary conditions. For the same uni-
parametric class of initial conditions discussed below,
Almgren et al. �17,18� identified the regions that either
evolved without singularities toward a circular droplet or de-
veloped a finite-time pinch-off. If, on the contrary, the prob-
lem is dominated by centrifugal forces �B=0�, it is easy to
show that Eq. �12� has a class of solutions of the form

h�x,t� = e−Dth0�e−Dtx� , �13�

where h0�x� is an arbitrary initial condition. This means that
centrifugal forcing alone stretches the fluid filament as it
thins, in such a way that pinch-off would ultimately occur
only at infinite time.

As shown by experiments �19� and numerics �21�, cen-
trifugal forcing will tend in general to produce interface con-
figurations with elongated thin radial filaments in the long
time evolution of fingering patterns. Once these radial fila-
ments are formed, however, the evolution toward a singular-
ity as a result of the nonlinear capillary term will oppose the
stretching effect of the centrifugal force, even though the
latter produces an overall thinning of the fluid filament. The
outcome of this competition between capillary and centrifu-
gal forces is indeed nontrivial and will be discussed in detail

in the following sections. Before proceeding to the full nu-
merical study, however, it is useful to make first some ap-
proximate analytical considerations that may shed some light
on the problem.

In fact, a first insight can be gained with an appropriate
change in variables of the form

G = heDt, � = xe−Dt, � =
B

5D
�1 − e−5Dt� , �14�

which turns Eq. �11� into the form of the purely capillary
case,

��G = − ���G��
3G� . �15�

This means that, except for boundary conditions, a nonuni-
form scaling of time and space reduces the problem to the
case without rotation. Figure 2 shows the basic effects of this
scaling in the case of a localized structure, for which no
significant effect of boundary conditions may be expected.
We plot the evolution of an initial Gaussian interface with
surface tension and rotation �B=1, D=2� after t=0.2 and
compare it with the equivalent case without rotation �B
=1, D=0� at time �= �1.0−exp�−10t�� /10=0.0865. The two
curves match exactly when the scaling that combines stretch-
ing and thinning according to Eq. �14� is applied.

Remarkably, this mapping suggests that the long time
evolution of the case with rotation is related to the behavior
of the case without rotation for a finite time. Indeed, the time
variable � is bounded by a maximum value �m= B

5D , so that an
infinite-time lapse for the physical time t is mapped into a
finite-time interval for �. Finite-time pinch-off singularities
are, thus, in principle possible in the presence of rotation if
they occur at finite time also in the case without rotation.
However, the contrary is also possible, that is, rotation would
prevent the formation of finite-time pinch-off for those situ-
ations where the pinch-off of the case without rotation occurs
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Evolution of an initial Gaussian height with D=0 and D=2

Interface at
t = 0.0865, D=0

Interface at
t = 0.2, D=2

FIG. 2. Evolution of an initial Gaussian interface which is set to
zero and with zero derivative in the interval �x= �5, �	�. We plot
the initial condition and two evolved interfaces corresponding to the
cases with rotation �D=2, B=1� and without rotation �D=0, B
=1� at respective times related by scaling �14�. They are taken after
t=0.2 and t=0.0865, respectively. The interface obtained at t=0.2
with rotation is reproduced exactly by scaling the interface evolved
without rotation obtained at t=0.0865. This scaling involves
stretching and reducing the height using an exponential factor as
indicated in the text.
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too late. Specifically, in situations where Eq. �15� predicts no
singularity for ���m, one should expect that there will be no
singularity in the original variables at finite time for the case
with rotation. Accordingly, the behavior of the physical vari-
ables will be asymptotically that of the purely rotating case
�Eq. �13��. On the other hand, if Eq. �15� predicts a finite-
time singularity at �s��m then one may expect also a finite-
time singularity in the physical time ts= 1

5D ln�1−
5D�s

B �−1. The
mapping of our problem to the one without rotation is obvi-
ously not exact because the boundary conditions imposed by
the matching to the nonlubrication region are different in
both cases. That is, in the variables where the lubrication
approximation takes the form of Eq. �15� the dynamics of the
droplet closing the fluid filament are different in the two
problems, thus, resulting in different boundary conditions for
the lubrication equation. Although inexact, the argument is
useful both to intuit the connection between the two prob-
lems and as an explicit �albeit approximate� prediction of the
behavior for the case of rotation.

This analysis is interesting to the extent that it yields
quantitative predictions under the assumption that boundary
conditions for the pinch-off regions are not relevant. For ex-
ample, if �0 is the time at which a particular interface pinches
off in the case without rotation, this approximation implies
that the maximum rotation at which one would expect finite-
time pinch-off is given by D /B=1 / �5�0�. Accordingly, fail-
ure of this prediction will signal a crucial role of the effective
boundary conditions for the lubrication equation due to the
matching with the droplet that closes the fluid filament.

IV. MODEL EQUATION AND NUMERICAL
INTEGRATION

In order to fix a representative class of initial conditions
that is relevant to the present discussion, and for the sake of
comparison, we choose the uniparametric family of
dumbbell-shaped interfaces studied by Almgren et al.
�17,18�, which take the form

� = s + �2

3
+ 5a�sin�2s� + � 1

12
+ 4a�sin�4s� + a sin�6s� +

�

2
,

�16�

where s is arclength, dh /dx=tan �, and a parametrizes the
family of interface shapes. For convenience, we will param-
etrize the initial condition with the interface height
h�x=0, t=0� which we designate by H0.

To resolve the pinch-off region properly, in our numerical
integration we refine the mesh size in the pinching region
progressively. Treating a closed interface presents a problem,
since the last term of Eq. �12�, which is related to the curva-
ture of the interface, becomes infinite at the end of the finger.
We deal with this problem by modifying the equation
through a partial resummation of all higher-order terms in-
volving curvature as it has been done in �22� �for further
information see also �1��. In this way the problem is defined
by

�th = − �x�hu�, u = Dx + B�x�,

�tl = u�l�, � =
�x

2h

�1 + ��xh�2�3/2 , �17�

where h is the height of the interface, u is the velocity at each
point, and l is the position of finger, a free boundary whose
velocity must consistently coincide with that of the fluid, u.
This procedure not only allows us to handle a closed inter-
face with an infinite �xh at the end point l, but it avoids the
problem of supplying explicit boundary conditions to Eq.
�12�. This procedure includes the important physics of the
droplet both in terms of shape and speed. In fact, in the
absence of rotation, this resummation implies the relaxation
to a circular interface. Moreover, in the presence of rotation
it is known that an exact solution of the full Hele-Shaw
equations is a circular droplet moving out of the rotation axis
exponentially as discussed in �21�. The above resummation
for the particular case of a free droplet would also tend as-
ymptotically to that solution. Note that, even if the
asymptotic solution is correct, it is not guaranteed in general
that the dynamics outside the domain of validity of the lu-
brication approximation remains close to the exact one. In
our case, however, a separation of time scales between the
slow variable l�t� and the fast relaxation of the interface
shape in the droplet region ensures that the shape evolution
is quasistatic.

Our fully implicit code simulates one quarter of the inter-
face �x�0, h�0� using initially 2N equidistant points at
�x where the different values of hi are computed at the odd
points of the mesh and ui at the even. Boundary conditions at
x=0 are u�−x�=u�x� and h�−x�=h�x�. At x= l we have h=0
and u�l� is computed using the symmetry of the negative part
�x�0, h�0� of the interface. The error is controlled by a
combination of the computations for time steps dt and dt /2,
which yields corrections of order dt3. We reject a time step
when the relative error at any point in u and h �difference in
the result between performing one dt step and two dt /2
steps� is larger than 5%. In this case, we proceed to reduce dt
by half and try again until an optimum value of dt is reached.
This control allows us to have an adaptive time step from the
initial time step until the end of the simulation run.

As the interface evolves, a new mesh is generated when
the condition that the number of mesh points between the
points xmin and xb �where h�xmin�=Hmin and xb is the point
where h�xb�=2Hmin� is larger than a certain fixed value Nm
does not hold. Whenever this condition is not fulfilled the
number of data points is increased and a new refined mesh
with new values h and u is generated using interpolated data
from the previous time step. This new mesh is constructed as
follows. First, it has a smaller fixed �xs��x distance be-
tween points in the singular region �approximately symmet-
ric around the minimum� providing the necessary accuracy
in our simulations. As one moves away from the singular
region the distance between the mesh points is progressively
increased. This is accomplished multiplying the spatial step
by the same factor � for each consecutive point until the
original �x is recovered. From then on, the spatial distance
between the different points is again �x.
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We have changed Nm and � in our simulations to study its
robustness and the time required to perform a typical simu-
lation. Simulations are fairly insensitive to Nm as long as
Nm�10. Increasing this value does not affect the results and
only increases the time computation �at least for Nm�50�.
On the contrary simulations are more sensitive to �. It cannot
be too small since it makes the simulations extremely time-
consuming, nor very large since accuracy and eventually in-
stabilities can appear. We take �=1.005–1.02 as the appro-
priate range of intermediate value with robust results.

This numerical scheme based on the lubrication approxi-
mation which uses an adaptive mesh is much more efficient
than the full Eqs. �1�–�3� which contain complex integrals.
The latter scheme is time-consuming owing to stiffness and
numerical instability, in particular for adaptive meshes. How-
ever, it is worth showing the explicit comparison of both
numerical evolutions for times as long as possible, in par-
ticular because the conditions for the lubrication approxima-
tion are not fulfilled in the entire system �the droplet region�,
while the problem is strictly speaking nonlocal. To this pur-
pose we have computed the exact evolution as defined at the
beginning of Sec. II. We have removed the main part of the
stiffness by treating the singular terms �those appearing in
the lubrication approximation� implicitly. The limiting fac-
tors for this integration are stability and computation time.

In Fig. 3 we use two different rotation parameters D /B
=4 and D /B=10. For each one we use two different initial
conditions �different Hmin�t=0�=H0�. All in all, four initial
interfaces have been evolved using the exact and the lubri-
cation approximation making a total of eight runs. Thick
continuous lines represent evolutions using the full exact
equations. Discontinuous thinner lines are evolutions using
the lubrication approximation. We show that both exact and
approximate solutions differ only slightly, both preserving
the nontrivial transitions between different qualitative behav-
iors through several orders of magnitude. Only for large ini-
tial filament thickness and large rotations can we find some

significant differences. The pinching singular behavior is
thus expected to be correctly captured by the lubrication ap-
proximation.

V. NUMERICAL RESULTS

A. Asymptotic behaviors

Figure 4 shows the basins of attraction of the different
asymptotic behaviors for the space of initial conditions of
class �16� parametrized by H0=h�x=0, t=0�, which is also
the minimum of the interface Hmin at t=0, as a function of
the ratio D /B which measures the competition between cen-
trifugal and capillary forces. The region marked as I includes
the initial conditions for which capillary forces strongly
dominate to the point that the interface evolves toward a
centered stable drop around the axis of rotation �see top of
Fig. 5�. Region II on the right designates those initial condi-
tions for which centrifugal forcing dominates. Those initial
conditions evolve to form a thin filament which stretches
exponentially with two drops at the end that escape also
exponentially toward infinity �see bottom of Fig. 5�. Within
numerical accuracy, we must conclude that region II corre-
sponds to �exponential� pinch-off at infinite time. Region III
in between exhibits a more complex behavior owing to a
subtle competition between capillary and centrifugal forces.
Black squares �circles� indicate where the transition from

FIG. 3. The minimum value of the filament is compared for the
lubrication approximation and the exact evolution in four different
cases. Two runs with D /B=4 and two runs with D /B=10 using
different initial conditions �different Hmin�t=0�=H0�.

FIG. 4. Basin of attraction of five different attractors in the
space generated by our uniparametric family of solutions �defined
by H0� and D /B. Region I is the basin of attraction of a centered
stable droplet without pinch-off. Region II corresponds to a thin
filament with a droplet at the top which reaches infinity. Regions
IIIa, b, and c have in common that the minimum of the interface
diminishes very rapidly at some moment of the evolution. The dif-
ferences among them are explained in the text. Black dots and
circles, together with gray diamonds, indicate the points where tran-
sitions among the different attractors have actually been computed.
The thick line at the bottom left indicates the set of initial condi-
tions for which the argument based on the nonuniform time rescal-
ing �see Sec. V B� would predict also finite-time pinch-off in the
presence of rotation.
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region I �region II� and III was found. Gray diamonds indi-
cate the points where difference of behavior within region III
was found. The location of all these points is accurate up to
10% �which is indicated roughly by the size of the symbol�
when we changed the parameters � and Nm. Therefore, even
the presence of the sliver of region IIIa is very robust to
changes in mesh accuracy, if only slightly thinner or wider
depending on the accuracy of the mesh.

All initial conditions in region III exhibit a sudden drop of
Hmin which becomes very small. The characteristic evolution
of the interfaces in this region is depicted in Fig. 6. The
apparent tendency to finite-time pinch-off is, in some cases,
overcome by centrifugal forces. The line which separates
regions IIIb and IIIc is also the limit between a droplet ap-
proaching the center of the cell �on the left� or a droplet
evolving toward infinity �on the right�. All cases marked as
IIIa lead to finite-time pinch-off to within the achievable nu-
merical accuracy �see Fig. 6 �middle� and Fig. 7�. Region
IIIb includes those for which a very fast decay in Hmin
�which may lead one to think there is a pinch-off singularity�
is overcome after a finite time by the centrifugal forcing,
which reduces the decay to an exponential which persists for
the simulation time �see Fig. 6 �bottom� and also Fig. 8�.

Finally, initial conditions in region IIIc have in common
the fact that the droplets are receding toward the center. The
interface seems to approach pinch-off faster than exponen-
tial, but at some point this fast decay stops changing behav-
ior and exhibiting in some cases nonmonotonic rebound. Af-
ter this rebound the minimum of the interface starts decaying
again in a rather smooth way which makes it difficult to
conclude numerically whether the finite-time pinch-off will
indeed occur. Figure 9 shows a series of evolution of the
minimum point of the interface for D /B=6 and with differ-
ent H0 where such rebounds can be seen. The corresponding

complete interface of one of those cases is at the top panel
depicted in Fig. 6. It is clear from the final decay that the
approach to pinch-off is faster than exponential but lower
than the fast finite-time pinch-off observed in region IIIa in
Fig. 7. The behavior in this region is basically the same
reproduced by Almgren et al. �17,18� at D /B=0 �notice that
at D /B=0 Fig. 4 shows that there is a part in region IIIa and
another in region IIIc� but extended to cases where rotation is
present.

To sum up, the differences between a, b, and c areas in-
dicate whether this rapid decay produces a real finite-time
pinch-off �IIIa�, eventually changes behavior toward a slow
but probable �though inconclusive� finite-time pinch-off near
the center of the cell because the drop propagates inward
�IIIc�, or toward an infinite-time pinch-off after a very sharp
decay close to the bubble propagating outward �IIIb�.

It is worth remarking that the transitions between region
IIIa and both IIIb and IIIc are numerically quite sharp. In
fact, the thickness at which points in regions IIIb and IIIc
show a change in behavior with time decreases abruptly by
several orders of magnitude as we approach the boundary.
We define the borderline at those points where we see no
change in behavior within our numerical reach �10−16�. So
even though we cannot rule out a change in behavior after
that, the fact that this is moved so fast to extremely small
values of thickness suggests that there is indeed a qualitative
change in the asymptotics.

B. Effective boundary conditions

In Sec. III we discussed a mapping of the lubrication
equation with rotation to the one without rotation. Accord-
ingly, the only reason why the two problems are not equiva-
lent up to a change of variables in the lubrication region is
that the corresponding boundary conditions are not mutually
transformed by the same mapping. The boundary conditions
that need to be specified for the lubrication equation are de-
fined by the matching conditions with the �nonlubricating�
region defined by the rounded droplet closing the filament.
Note that even for the local approximation �Eq. �17�� where
higher orders have been included, transformation �14� does
not leave the equations invariant. In this context it is inter-
esting to discuss the actual boundary conditions that must be
applied to the transformed problem in order to realize the
observed behavior of the original one.

In Fig. 4, the region enclosed by the thick line on the
bottom left defines the set of initial conditions for which the
naive argument based on the nonuniform time rescaling
would predict also finite-time pinch-off in the presence of
rotation. This corresponds to the condition D /B
�1 / �5�0�H0��, where �0�H0� is the time of pinch-off for
D /B=0, as a function of the initial interface parametrized by
H0. In this region the time rescaling provides a reasonable
approximation of the pinch-off time. Obviously, within this
approximation, if there is no finite-time pinch-off �for an
initial thickness H0�0.02� without rotation �D=0�, there
cannot be for any D. Figure 4 clearly shows that this is not
the case for very large regions where we find finite-time
pinch-off. In other words, we find that the effective boundary

FIG. 5. Evolution of the global shape of the interfaces. Top:
initial condition going to centered mass; corresponds to region I in
Fig. 4. Bottom: example of region II where the initial condition
goes to a drop reaching infinity without apparent finite-time
pinch-off.
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conditions on the lubrication approximation play a crucial
and subtle role regarding the existence of finite-time singu-
larities.

In order to visualize in more detail the role of the bound-
ary conditions, in Fig. 10 we compare three different evolu-
tions for two representative initial conditions which both
lead to finite-time pinch-off with rotation. The solid curve is
a snapshot of the evolution with rotation right before pinch-
off. In the dashed line, we plot a snapshot of the evolution

without rotation �D=0� at the corresponding time as given
by time rescaling �14�. Finally, as a dotted line we plot this
last curve but now rescaled also in both x and h defined by
the same mapping. This is the curve that would correspond
to the case with rotation if the mapping were exact, including
the boundary conditions. The large discrepancy between the
solid and the dotted lines clearly reflects that the mapping is
not exact for the whole problem but allows also to visualize
how this discrepancy translates into the differences in the

FIG. 6. Evolution of the global shape of the interfaces. Top: initial condition where the drops goes toward the center of the cell while the
minimum decreases sharply �inset� and later rebounds slightly making finite-time pinch-off inconclusive �region IIIc�. Middle: interface
reaching finite-time pinch-off �region IIIa�. Bottom: the drop evolves toward infinite and the minimum of the interface initially has a sharp
decay but changes behavior suddenly toward infinite-time pinch-off �region IIIb� with the corresponding drop advancing but with a filament
thickness which has reached extremely low values �Hmin=10−8�.
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matching region between the filament and the droplet.
In the upper case of Fig. 10 the droplet is receding toward

the center and the mapping would predict that there should
be no finite-time pinch-off even though there could be one in
the absence of rotation. In the lower case, the evolution with-
out rotation would lead to an infinite stretching of the lubri-
cation region without finite-time pinch-off, while again, the
correct boundary condition does lead to finite-time pinch-off
for the case with rotation.

VI. SUMMARY, DISCUSSION, AND CONCLUSION

In this paper we have derived the lubrication approxima-
tion for Hele-Shaw flows with centrifugal forcing for radial
filaments. We have concentrated mostly on the case of high
viscosity contrast for which the lubrication approximation is
shown to be local. The lubrication analysis shows that, even
though the rotation tends to create thin stretching filaments,
the centrifugal forcing generally competes against capillary
forces. In the case when capillary forces dominate over cen-
trifugal forces, the behavior is an extension of previous re-
sults in Refs. �17,18�.

We have shown that when the two competing forces are
comparable, the phase space of possible asymptotic behavior
is complex. We have obtained this phase space numerically
in detail for the same class of initial conditions studied in
�17,18�. Our focus has been the existence of finite-time sin-
gularities rather than in the characterization of their self-
similar scaling, which remains an open question when rota-
tion is present. In particular we have shown that the
matching of the lubrication region to the droplet region end-

FIG. 7. The minimum of the interface as a function of dimen-
sionless time for two different initial conditions inside area IIIa.

FIG. 8. The minimum of the interface as a function of dimen-
sionless time for two different initial conditions inside area IIIb.

FIG. 9. The minimum of the interface as a function of dimen-
sionless time for five initial conditions all of them using D /B=6
belonging to area IIIc.
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FIG. 10. Effect of boundary conditions imposed by the matching
between the lubrication region and the droplet. The three interfaces
in each plot represent the actual evolution with rotation up to the
pinch-off time �black�, the interface evolved without rotation with
the correspondingly scaled time �dashed interface with D=0 at �
= B

5D �1−e−5Dt��, and the latter with the scaling defined by Eq. �14�
�dotted�. See discussion in the text.
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ing the finger yields a nontrivial boundary condition for the
lubrication equation that plays a crucial role for the existence
of finite-time singularities and gives rise to the complex non-
linear behavior of the intermediate region.

Finally, for the regime dominated by centrifugal forces,
the present study confirms the experimental observation �19�
and the numerical evidence �21�, that, in the high viscosity-
contrast limit �A=1�, finite-time singularities do not occur.
The fact that area II is relatively large explains both the
experimental results of Ref. �19� and the phase-field simula-
tions of Ref. �21�. For high rotation speeds D /R�20 the
filament seems to approach infinity without pinch-off regard-
less the initial condition or initial thickness. These values of
rotation are the typical ones reported in experiments up to
now. This is in contrast to cases with A�1, which do exhibit
frequent pinch-off even in the regime dominated by centrifu-
gal forces �19,21�.

While the question of the occurrence of pinch-off for low
viscosity contrasts when centrifugal and capillary forces are
comparable remains open, we can conclude that sufficiently
fast rotation produces conditions with long, thin filaments of
arbitrarily small thickness, but which do not pinch at finite
time. This suggests that rotation could be used as a means to
prepare initial conditions to study pinch-off of interfaces ex-
perimentally, in particular for the most common situation
where only capillary forces drive the dynamics �by switching
off the rotation�. Comparison between experiments on the
one hand and theory and numerical simulation on the other
could shed light on the issue of the three-dimensional effects
on real Hele-Shaw pinch-off events. Occurrences of pinch-
off events in situations with good control of the initial con-
ditions where the theory does not predict them could be
traced back to three-dimensional effects and help establish
the limitations of the effective two-dimensional description
of Hele-Shaw flows. We have performed simulations of this
possible scenario for different parameters in region II stop-
ping the rotation when the interface reached a given length
l=10. A typical result of this is shown in Fig. 11. After rota-
tion is switched off the droplets start receding and the fila-
ment thickness decreases smoothly. Eventually, the droplet
reaches the center of the cell. At this point the interface de-
velops a finite-time pinch-off close to �but at a certain dis-
tance of� x=0.

We conclude by proposing an experiment based on these
simulations. The basic idea is to look for early pinch-off in a

region close to the droplet after the rotation is stopped. In the
case where this pinch-off is present, it could only be attrib-
uted to three-dimensional effects of the cell. On the contrary,
to the extent that such pinch-off events near the droplet are
not taking place, one should conclude that the effective two-
dimensional Hele-Shaw description is correct. Ultimately,
such experiments could explore quantitatively the value and
dependence on parameters and conditions �wetting properties
of the cell, etc.� of the cutoff length that limits the validity of
the 2D Hele-Shaw equations �21�.
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